THREE-DIMENSIONAL ANALOG OF A VORTICAL
CHAPLYGIN COLUMN (A GENERALIZED HILL
VORTEX)

A, G, Yarmitskii UDC 533.6.011

In connection with the possibility of the practical application of annular vortices in the struggle
against atmospheric pollution in industrial enterprises {1}, there is rising inferest in cylindrical and spher-
ical vortices.

There is given below a generalization of a spherical Hill vortex, which is a three-dimensional analog
of a vortical Chaplygin column [2]. As a partial case, a detailed investigation is made of a spherical heli-
cal vortex: inside of such a vortex, the motion of the vortex is an axisymmetric homogeneous helical flow.
A picture of the flow inside this vortex is constructed, and it is shown that, similarly to a vortical Chap~
lygin column or a Hill vortex, it can move translationally at a constant rate in a liquid which is at rest at
infinity., The limiting rate of motion of a helical vortex, determined by the requirement that the pressure
within it remain positive, depends on the pressure of the liquid at infinity and on its density. This velocity
is approximately two times less than the corresponding velocity of a Chaplygin column and four times less
than the velocity of a Hill vortex.

Although, for the practical use of spherical vortices, a whole series of factors must still be taken
into consideration, above all the viscosity, the fact is of interest that within the framework of a model of
an ideal liquid a class of spherical vortices can be constructed, one of whose partial cases is a Hill vortex.

1. In the general case of an axisymmetric vortical flow of an incompressible nonviscous liquid, the
equation for the flow function ¥ in spherical coordinates R, 8, ¢ has the form {3]
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Here the function () determines the law of change of the g~component of the velocity, while the func-
tion F@) characterizes the law of the distribution of the energy in the flow,

Let us investigate the question of the possibility of the existence of a spherical vortex, moving trans-
lationally in a liquid which is at rest at infinity, Inside of the vortex, in a system of coordinates moving
together with the vortex, the flow is described by the differential equation (1,1). Imparting to the whole
mass oftheliquid a velocity equal in value and opposite to the direction of the velocity of the vortex, we go
over to a form which is more convenient for consideration of the problem of potential flow around a spher-
ical vortex, Under these circumstances, the continuity of the corresponding components of the velocity at
the surface of the vortex is required, Let us pass on to consideration of one of the problems of potential
and vortical flows [1]. As is remarked in {1, 4], in general form, this problem has not been investigated,
even for ®()=0 and the simplest functions F(y). Only with®(y)=0and F(y) = Ay, where A is a constant, is there
an exact solution, i.e.,the flow function is a "very simple flow field, known as a spherical Hill vortex" {41,

Leaving unchanged the law of distribution of the energy, and assuming, in addition, that &) =k¢, we
write Eq. (1.1) in the form

oy | sin®

b Y L pep . 4R2sin?@=0. 1.2)
R I (sineae)‘ ¥ ! {

3w

Zhdanov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 137-141, S
September-October, 1974. Original article submitted April 18, 1974.

©1976 Plemum Publishing Corporation, 227 West 17th Streer, New York, N.Y. 10011. No part of tlus publication may be reproduced,
stored in a retrieval system, or transmitted, v any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

698



The flow function ¥, for potential flow around a sphere of radius @ has the form
(1.3)

Y, =Y, UR2 (1 — &®/ R%sin*6 (R>ad) .

Thus, the problem reduces to seeking a flow function ¥_ inside the vortex, satisfying Eq. (1.2) and

the flowing conditions at the surface of the vortex:
Y_|geeeg =0 (1.4)
. o _ - (1.5)
O e = B e =D

2. Let us consider the generalization of a Hill vortex. We shall seek the solution of the problem
2.1)

(1.2), (1.4}, (1.5) in the form
Y_ == f (R)sin® 9 (R < a)

where f(R) is an arbitrary differentiable function of the variable R. This leads to an ordinary differential
(2.2)

equation,
RY" (R) + (RR2 — 2)f (R) = AR* ,

To find the general solution of this equation with A =0, we go over to the new variables z and w(z):

= AK R (), z=kR

We obtain an inhomogeneous Bessel equation;
2w d_i” + (22— w = S,

-

d:2

A general solution of this equation, stable at all endpoints inside the sphere, has the form

w=Cly (3) F 55, o, (3)

where C is an arbitrary constant; J3/2(z) is a Bessel function of order 3/2; 85/2’ 3/2(2) is a Lommel function,

From the theory of Bessel functions, we have S, , y,,,(z) =z¥; specifically, 85/2, 3/2(2) =z3/2,
Taking this into consideration, we obtain
w(z) = CJ% (z) - 2%

(2.3)

Going back to the previous variables, we find
7 (R) = AKTRRY: (CT,, (kR) + (kR)'T)

Y_= AKTERY (CJ,, (kR) + (kR)'9) sin?8

We assume, first of all, that 0 <k <b/@, where b=4,4934 is the least positive root of the function

J3/2(Z).
Then from the condition (1.4)
C=—(ka)'*/ J,  (ka)
and, consequently,
o aneafq (' Ta, (BR) - 2.4
b= a1~ (2) Ty o @4
Satisfying condition (1.5) we find
A =3 g2 J“/n (ka) .
3Jyy, (ka) — ka J,/z (ka)
(2.5)

Thus,
, 7, (ka) 32 Ty (kR) ,
b =35 I 2 —|(& E] 2 gin2
b= 37, (k) — kal,, (ko) (1 (H) 7, a) )R sin?6

The flow under consideration has the following special characteristic: the vector-vortex at each point
of the surface of the sphere is located in a tangential plane passing through this point, and inclined at ex~

actly the same angle to the corresponding meridional plane,
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Fig. 1
The components of the vector-vortex 2 {3] are

Qp = ke, Q= ke, Q, = fkv, —~ AR sin 0 ,

At the surface of the sphere
) Qp =10, Q=271 siub. Q,= —Aesin9.
Therefore,

o ML, (M

) - — =k ‘2.6)
Qpe= — 2 = const A =ka A
/ i }\,J,{ 1}.) il 3.}; (;v) ( )

which proves the assertion made above,

Thus, the parameter k is determined by the angle of inclination of the vector~vortex at a given point
of the surface of the sphere to the corresponding meridional plane.

Let us consider the limiting cases k=0 and k=b/a,

Using expressions for the Bessel functions with small values of the argument, it can be verified that,
in the first case, at the surface of the sphere Q4 =0, and the flow function (2.5) determines the flow inside
a spherical Hill vortex, In the second case, we obtain a spherical vortex, at whose surface sz =0; inside
this vortex, the flow of the liquid is homogeneous (k=const) and helical, We shall call such a vortex a
spherical helical vortex., Following [3], we shall call the parameter k the intensity of the homogeneous
spherical motion; in the case under consideration, it is determined by the ratio b/a.

3. Let us consider a spherical helical vortex. Setting k=b/a in (2.5), we find

3.1) .

o
p_ =30 %7 R, (bR/a)sin?0 .
Yo=Y o)  (BR/a)

Since J4/,() <0, and Jg/z(-bR/a) >0 with R<a, then ¢.. <0, ¥4 >0, With k >b/a, the flow function would
change sign inside of the sphere,

The equation of the lines of flow in meridional cross sections of the sphere (R<a) is

)

These lines are shown in Fig, 1 for equally-spaced values of ¢_. ’fhey include the separating lines
of the flow: the axis of symmetry and meridional line of the sphere,

;
/2

Iy, (b E.) sin? 6 melconst o (3.2)
2l g

The maximum absolute value for the values of ¢~ is reached at the point (0.611a, 7/2), around which
the lines of the flow are constricted. At this point, the components of the velocity vgp =vg= 0. For purppses
of comparison, we note that in the case of a vortical Chaplygin column [2] the corresponding point is located
at a distance 6=048a from the axis of symmetry of the flow, where « is the radius of the cylindrical vortex;
in the case of a Hill vortex, its coordinate is (0.707¢, 7/2). In the last two cases, this point is critical;
through it passes the motionless central vortical filament rectilinear in the case of a Chaplygin column, and
circular in a Hill vortex).

In the case under consideration, the point of an extremum of the function ¥_ is not critical, since at
this point the azimuthal component of the velocity vy, differs from zero, Therefore, the vortical line pass-
ing through the given point, and which constitutes a neighborhood in a plane perpendicular to the axis of
symmetry of the flow, rotates around the latter with a certain peripheral velocity, This velocity can be
found from the forraula

K s q e Jaz(b]?,/u) I ]
=mme U g) o (3.3)
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Carrying out the corresponding calculations using tables of Bessel functions with R/ a=0,611 and
8 =m/2, we obtain
Vo = —2.870 .

The greatest absolute value of the g~component of the velocity is attained at the point (0.463a, 7/2)
| v, | = 8.35U.

Pmax

Lines of the intersection of the level surfaces of the function Yo (R, 9) and the plane of a2 meridional
cross section of the sphere are shown in Fig, 2.

The remaining components of the velocity can be found from the formulas

/; (3.4)
R Hsi1n 9 '1%1()3' = bJ,z o (%)' T (b R‘i) 00s 0
o= ~J»zsfn B % = zbJ,i o7 7(:‘) ’ (b % T, (b %‘) ~Ju (b %))Sm 9. (3.5)

The maximal value of the velocity inside the vortex arises at its center:

2b)1’2 1 530 .

[ Pmax [ = <?E_ ——-————[ J:/z Gl U=
This same velocity inside a Chaplygin column {2] is 2.48U and inside a Hill vortex, 1.5U, This points
to a g reater intensity of the vortical motion inside a spherical helical vortex.

Let us pass on to determination of the pressure inside the vortex. As was shown in [7], with the
helical motion of a nonviscous liquid, the reserve of energy in the whole mass of liquid is constant, i.e.,
the Bernoulli equation is applicable to the flow as a whole:

l’.-f-w = const » (3.6)
P 2

With a transition through the boundary of the vortex, the pressure changes continuously. Therefore,
we can set

const = po/p -+ U?/2

where p; is the pressure at infinity.
Since the greatest absolute value of the velocity is attained at the center of the vortex, the lowest pres~
sure will exist at this point:

- 2 \pU2? . 3.7)
Prin = o+ (1—‘—3_}:]—1‘/—22—-((5)7— = py— 13.5002 .

For the pressure inside the vortex to remain positive the following condition must be observed:

U <0.272 (po [ p)"= (3.8)

With exactly the same ratio p,/p, the limiting velocity of this motion is approximately two times less
than the corresponding velocity of a Chaplygin column and four times less than the velocity of a Hill vortex,

Imparting to the whole mass of the liquid a velocity U in an opposite direction, we obtain a spherical
helical vortex, moving translationally in a liquid which is at rest at infinity,
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