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In connection with the possibi l i ty of the prac t ica l  application of annular vor t ices  in the struggle 
against a tmospher ic  pollution in industrial  en te rpr i ses  [1], there is r is ing interes t  in cyl indr ical  and spher -  
ical vor t ices .  

There is given below a general izat ion of a spherical  Hill vortex, which is a th ree-d imens ional  analog 
of a vort ical  Chaplygin column [2]. As a part ia l  case,  a detailed investigation is made of a spherical  heli-  
cal vortex: inside of such a vortex, the motion of the vortex is an ax isymmetr ic  homogeneous helical flow. 
A picture of the flow inside this vortex is constructed,  and it is shown that, s imi lar ly  to a vor t ical  Chap- 
lygin column or  a Hill vortex,  it can move t ranslat ional ly  at a constant rate in a liquid which is at res t  at 
infinity. The limiting rate of motion of a helical vortex, determined by the requirement  that the p ressure  
within it r emain  positive, depends on the p re s su re  of the liquid at infinity and on its density. This velocity 
is approximately two t imes less than the corresponding velocity of a Chaplygin column and four t imes less 
than the velocity of a Hill vortex.  

Although, for  the prac t ica l  use of spherical  vort ices ,  a whole ser ies  of factors  must  still be taken 
into considerat ion,  above all the viscosi ty,  the fact is of interest  that within the f ramework of a model of 
an ideal liquid a c lass  of spherical  vor t ices  can be constructed,  one of whose part ial  cases  is a Hill vortex.  

1. In the general  case of an ax isymmetr ic  vort ical  flow of an incompressible  nonviscous liquid, the 
equation for the flow function ~D in spherical  coordinates R, 0, ~p has the form [3] 

O"-t~ . s ~  _0 0 ( 1__~ 0~]  _ 0 (~.) q), (q:) + y a (t[-)/2"- sin ~ 0 = 0 . ( 1 . 1 )  
OR"- R"- O0 \sin 0 00 / 

Here the function ~(~) determines  the law of change of the ~-component of the velocity, while the func- 
tion F(~) cha rac te r i zes  the law of the distribution of the energy in the flow. 

Let us investigate the question of the possibil i ty of the existence of a spher ical  vortex, moving t r a n s -  
lationally in a liquid which is at res t  at infinity, Inside of the vortex, in a system of coordinates moving 
together  with the vortex,  the flow is described by the differential equation (1.1). Impart ing to the whole 
mass  of thel iquid  a velocity equal in value and opposite to the direction of the velocity of the vortex, we go 
over  to a form which is more  convenient for  considerat ion of the problem of potential flow around a spher-  
ical vortex.  Under these c i rcumstances ,  the continuity of the corresponding components of the velocity at 
the surface of the vortex is required.  Let us pass on to considerat ion of one of the problems of potential 
and vor t ica l  flows [1]. As is remarked  in [1, 4], in general  form, this problem has not been investigated, 
even for r = 0 and the s implest  functions F(r Only with 4~(r = 0 and F(r = A~, where A is a constant,  is there 
an exact  solution, i .e . , the flow function is a "very  simple flow field,known as a spherical  Hil lvortex" [4]. 

Leaving unchanged the law of distribution of the energy,  and assuming,  in addition, that ~(r =kr we 
write Eq. (1.1) in the form 

-=---R -Y ~ \sin 0 001 ~- /~$ -- .4R~ sin"-0 = 0 �9 (1.2) 
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The flow function r f o r  potent ia l  flow a round  a sphe re  o f  rad ius  a has  the  f o r m  

% ~ V 2 U R  2 ( 1 -  a 8 / R  3) sin 20 ( R > a )  . (1 .3 )  

Thus ,  the p rob l e m  r e d u c e s  to seek ing  a flow funct ion ~_ inside the vor t ex ,  sa t i s fy ing  Eq. (1.2) and 
the flowing condi t ions  at the su r f a c e  of  the vor t ex :  

r = ,0  (1.4) 

O0)_~ R=a - O~+OR R=a = ~ /~ Ua sin 2 9 o (1.5) 

2. Le t  us  c o n s i d e r  the g e n e r a l i z a t i o n  of  a Hill vo r t ex .  We shal l  seek  the solut ion of  the p r o b l e m  
(1.2), (1.4), (1.5) in the f o r m  

% ~ / (B) sin 2 O (R < a) (2.1) 

where  fOR) is an a r b i t r a r y  d i f fe ren t iab le  funct ion of  the va r i ab le  R. This  leads  to  an o r d i n a r y  d i f fe ren t ia l  
equat ion,  

R21 " (R) - -  (k21~ 2 --  2)f (/~) = A R  4 , (2.2) 

To find the ge ne ra l  solut ion of  th is  equa t ion  with A ~0,  we go o v e r  to the new v a r i a b l e s  z and w(z): 

/ ~  Ak-"~t~l'~'w (z), z = kR 

We obtain an inhomogeneous  B e s s e l  equat ion;  

dz ~- dz 

A g e n e r a l  s o h t i o n  of this  equat ion,  s tab le  at  al l  endpoirlts ins ide  the s p h e r e ,  has  fl~e f o r m  

~v = CJ~,. (z) + s ~  ~, (z) 

where  C is an a r b i t r a r y  cons tan t ;  J3/2(z) is a B e s s e l  funct ion of  o r d e r  3/2; S5/2, 3/2(z) is a L o m m e l  funct ion.  

F r o m  the t h e o r y  of  B e s s e l  funct ions ,  we have Sv+l ,v (Z)=zV;  spec i f ica l ly ,  S~/~, 3/2(z)=z3/2. 

Tak ing  this  into cons ide ra t i on ,  we obta in  

u" (z) ~ C d~, (z) + z ~ . 

Going back  to the p r e v i o u s  v a r i a b l e s ,  we find 

f (R) = AZ-V~B 'j~ (CJ~, (kB) 5- (kR) ~/~) (2.3) 

~_ = Ak-'/~R '/* (C J3 h (]~.R) + (kB) ,.2) sin'-' O . 

We a s s u m e ,  f i r s t  of  all ,  tha t  0 <k < b / a ,  where  b =4.4934 is the leas t  pos i t ive  roo t  of  the funct ion 
JV2(z). 

Then f r o m  the condi t ion (1.4) 

and, consequen t ly ,  

Sa t i s fy ing  condi t ion (1.5) we find 

Thus ,  

~- = %z U 

c -- --(A-a) ~' / J~ (ka) 

~ - =  Ak-2(l--(~)  %" J3,2(kR) J~/2 ( k a ) )  H~ sin: 0 . (2.4) 

A = a/~ Uk.2. J~h (ka) 
3J31, (ka) -- ka ] , ,  (ka]- 

3J~ h (ka) - -  kaJ,/2 (ka) 3"~,, (ka) ") R~ sin~ 9 . 
(2.5) 

The flow u n d e r  c o n s i d e r a t i o n  has the fol lowing spec i a l  c h a r a c t e r i s t i c :  the v e c t o r - v o r t e x  at each  point  
of  the s u r f a c e  of  the sphere  is loca ted  in a t angen t i a l  plane pas s ing  th rough  th is  point,  and incl ined at e x -  
ac t ly  the s a m e  angle to the c o r r e s p o n d i n g  m e r i d i o n a l  p lane .  
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Fig. t Fig. 2 

The components of the vec to r -vor t ex  f~ [3] are  

QR = krR" Q~ = kqj, 9. ~ k% -- A R  s i n O .  

At the surface of the sphere 

Therefore ,  

QR = O, P'o= 3"2k Usi;lO, P . ~ = - - A a s i n O .  

~J~ (~) 
~ = const Q. = ka) Z = o_~ / .c) 0 -- ~'J~,~ (~-) _. 3J~ ~(~0 (2.6) 

which proves the asser t ion  made above. 

Thus, the p a r a m e t e r  k is determined by the angle of inclination of the vec to r -vor tex  at a given point 
of the surface of the sphere to the corresponding meridional  plane. 

Let us consider  the limiting cases  k=0  and k = b / a .  

Using express ions  for the Bessel  functions with small  values of the argument,  it can be verified that, 
in the f irst  case,  at the surface of the sphere n 0 =0, and the How function (2.5) determines  the flow inside 
a spherical  Hill vortex.  In the second case,  we obtain a spherical  vortex, at whose surface ~r =0; inside 
this vortex, the flow of the liquid is homogeneous (k =const) and helical.  We shall call such a vortex a 
spherical  helical vortex.  Following [3], we shall call  the pa rame te r  k the intensity of the homogeneous 
spherical  motion; in the case under consideration,  it is determined by the ratio b/a. 

3. Let us consider  a spherical  helical vortex.  Setting k =b/a in (2.5), we find 

r  U- a ~'' B%j,,(bBja) sin~ 0 �9 (3.1) . 
b,f% (b) 

Since J1/2(b) <0, and J~/2(bI~/a) >0 with R <a, then ~.  <0, r >0. With k >b/a, the flow function would 
change sign inside of the sphere.  

The equation of the lines of flow in meridional  c ro s s  sections of the sphere (R <a) is 

( R  \1/2 ~ R ~ . 

7) J PT) 
These tines a r e  shown in Fig. 1 for  equal ly-spaced values of r 

of the flow: the axis of symmet ry  and meridional  line of the sphere. 

(3.2) 

]~hey include the separat ing lines 

The maximum absolute value for  the values of $ -  is reached at the point (0.611a, ~r/2), around which 
the lines of the flow are constr ic ted.  At this point, the components of the velocity v B =vo= O. For  purl~ses 
of comparison,  we note that in the case of a vort ical  Chaplygincolumn [2] the correslx)nding point is located 
at a distance 5=0,48a from the axis of symmet ry  of the flow, where a is the radius of the cyl indrical  vortex; 
in the case of a Hill vortex, its coordinate is (0.707a, ~r/2). In the last two cases ,  this point is cr i t ical ;  
through it passes  the motionless  centra l  vort ical  filament rec t i l inear  in the case of a Chaplygin column, and 
c i r cu l a r  in a Hill vortex). 

In the case under considerat ion,  the point of an ext remum of the function r is not cr i t ical ,  since at 
this point the azimuthal  component of the velocity vr differs from zero.  Therefore ,  the vort ical  llne pass -  
ing through the given point, and which constitutes a neighborhood in a plane perpendicular  to the axis of 
symmet ry  of the flow, rotates around the lat ter  with a cer ta in  per ipheral  velocity. This velocity can be 
found from the formula 
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Carry ing  out the corresponding calculat ions using tables of Bessel  functions with R/a=0 .611  and 

0 =7r/2, we obtain 

v~ = --2.87 U . 

The greatest absolute value of the ~0-component of the velocity is attained at the point (0.463a, v/2) 

[ V~max 1= 3.35U. 

Lines of the intersection of the level surfaces of the function v~o (R, 0) and the plane of a meridional 

cross section of the sphere are shown in Fig. 2. 

The remaining components of the velocity can be found from the formulas 

( a t '/' (3.4) , o , _  3 u ~ j  ,,-~,(~-~)oosO 
vR =RsinO //00 bYq~ (b) 

(t aj,~ 1~ 

The maximal  value of the velocity inside the vortex a r i ses  at its center:  

2b ~'~ [Vmax]=(~) ~ t  U=5,3U. 

This same velocity inside a Chaplygin column [2] is 2.48U and inside a Hill vortex, 1.5U. This points 
to a g r e a t e r  intensity of the vor t ica l  motion inside a spher ical  helical vortex.  

Let us pass on to determinat ion of the p res su re  inside the vortex.  As was shown in [7], with the 
hel ical  motion of a nonviscous liquid, the rese rve  of energy  in the whole mass  of liquid is constant,  i.e., 
the Bernoull i  equation is applicable to the flow as a whole: 

l__) + vR2 + v~ + %~ = consl; �9 (3.6) 
9 2 

With a t ransi t ion through the boundary of the vortex, the p res su re  changes continuously. Therefore ,  
we can set 

const= p0/P @ U-']2 

where P0 is the p res su re  at infinity. 

Since the grea tes t  absolute value of the velocity is attained at the center  of the vortex, the lowest p r e s -  
sure will exist at this point: 

= [ i - -  2b \pU~ (3.7) 
p~,: =~,, , \ -~Jv} (b) ) " Y  - = p ~  : 3 5 o u  ~ 

F o r  the p r e s s u r e  inside the vortex to remain positive the following condition must  be observed:  

V ~ 0.272 (po[ p)a,~ . (3.8) 

With exactly the same ratio Po/P, the limiting velocity of this motion is approximately two t imes  less 
than the corresponding velocity of a Chaplygin column and four t imes less than the velocity of a Hill vortex.  

Impar t ing to the whole mass  of the liquid a velocity U in an opposite direction, we obtain a spherical  
helical  vortex,  moving t ransla t ional ly  in a liquid which is at res t  at infinity. 
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